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Abstract. I point out the connection between the above papers and some earlier work appearing
in 1984Phys. Rev.A 29 1034 and in 1979Phys. Rev.A 20 2245.

In a recent letter in this journal, Nandiet al (1996) discussed the Dalgarno–Lewis method
of calculating the sum rule as an independent perturbation method. The transformation they
use (equation (5) of their paper) is none other than that used in the logarithmic perturbation
method (Aharonov and Au 1979). The connection of the logarithmic perturbation method
to the Dalgarno–Lewis (1955) method was discussed long ago by Au and Aharonov (1979)
(see section 3 of their paper).

It is more convenient to view the generalized Dalgaron–Lewis method as one that
involves writing the perturbed wavefunction as a scalar functionf times the unperturbed
wavefunction. To zeroth order, this scalar functionf is of course unity. To first order, one
recovers the Dalgarno–Lewis method. A perturbation method involving an expansion on
f for the one-dimensional problem was given by Kim and Sukhatme (1992). In the same
paper, Kim and Sukhatme also assert that since this method avoids taking the logarithm
of the wavefunction, the method is applicable to excited states. This is very much an
oversimplified statement. As the perturbation is introduced, the nodes of the wavefunction
shift from their unperturbed position. This means thatf must contain the needed singularity
to cancel the zeros in the unperturbed wavefunction. This fact is indeed demonstrated in
equation (29) in the example given by Kim and Sukhatme (1992). Here the singularity
appears in the form of the function tan 3x. In a general perturbation problem, such a
singular function as a solution may not be easily identifiable. The difficulty associated with
the zeros in an excited bound state wavefunction still exists in the method of Kim and
Sukhatme. However, as it turns out, the straightforward logarithmic perturbation expansion
method can be extended to excited bound states in one dimension. This justification was
given by Auet al (1991).

In 1984, in an attempt to extend the logarithmic perturbation method to excited bound
states in multi-dimensions, I presented a perturbation method (Au 1984) in which the
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bound state wavefunction is written asF exp(−G). For excited bound states, the nodal
information on the wavefunction is all contained inF . As the perturbation is introduced,
the wavefunction can respond in bothF andG. If we limit the response toG, we recover
the logarithmic perturbation method. If we limit the response inF and write its perturbation
expansion asF = ∑

λiFi , we have the generalized Dalgarno–Lewis method, which was
subsequently discussed by Kim and Sukhatme (1992). In Au (1984), I consider a general
perturbation problem of the form

Hψ =
[
H0+

∑
λiVi

]
ψ = Eψ (1)

with the usual expansionE = ∑∞i=0 λ
iEi andψ = ∑∞i=0 λ

iψi . Then in equations (1.19)–
(1.25) of Au (1984) I obtain the relation

∇ · [ψ2
0∇(Fi/F0)] =∇ · [ψ2

0∇(ψi/ψ0)] = 2(V eff
i − Ei)ψ2

0 (2)

where

V eff
i = Vi +

i−1∑
j=1

Fj (Vi−j − Ei−j )/F0 (3)

and

Ei =
∫
V eff
i ψ

2
0 d3r. (4)

To first order, that isi = 1, we recover the Dalgarno–Lewis equation upon identifying the
ratio F1/F0 = ψ1/ψ0 as the Dalgarno–Lewis function. It we go beyondi = 1, we have the
generalized Dalgarno–Lewis method for multi-dimensions. For one-dimensional systems,
equation (3) can be trivially integrated twice in quadrature to reproduce all the results of
Kim and Sukhatme (1992). Note that in equation (2) while the rationFi/F0 = ψ1/ψ0 is
singular at the unperturbed zeros, the solutions toFi or ψi are regular, in contrast to the
formulation of Kim and Sukhatme (1992) where the solutions tofi for the excited states
should be singular at the zeros of the unperturbed wavefunction.

Perturbation theory is an extremely useful tool in quantum mechanics. Many authors
have contributed to the developments and refinements of this technique. The effort to obtain
the perturbative corrections by direct solutions of differential equations was first attempted
by Schr̈odinger (1926), followed by Podolsky (1928) and Sternheimer (1951), Dalgarno
and Lewis (1955) and Schwartz (1959). The logarithmic perturbation method can be first
attributed to Wentzel (1926) and later Price (1954), Polikanov (1967), Aharonov and Au
(1979) and Turbiner (1980). I am sure that many authors have been unintentionally left out
of this partial list.
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